skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palma_Banos, Manuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We address the challenge of representativity and dynamical consistency when un- bonded fine-grained particles are collected together into coarse-grained particles. We implement a hybrid procedure for identifying and tracking the underlying fine-grained particles—e.g., atoms or molecules—by exchanging them between the coarse-grained particles periodically at a characteristic time. The exchange involves a back-mapping of the coarse-grained particles into fine-grained particles, and a subsequent reassign- ment to coarse-grained particles conserving total mass and momentum. We find that an appropriate choice of the characteristic exchange time can lead to the correct effec- tive diffusion rate of the fine-grained particles when simulated in hybrid coarse-grained dynamics. In the compressed (supercritical) fluid regime, without the exchange term, fine-grained particles remain associated to a given coarse-grained particle, leading to substantially lower diffusion rates than seen in all-atom molecular dynamics of the fine- grained particles. Thus, this work confirms the need for addressing the representativity of fine-grained particles within coarse-grained particles, and offers a simple exchange mechanism so as to retain dynamical consistency between the fine- and coarse- grained scales. 
    more » « less